Lecture 02. Data Structure

Instructor: Luping Yu

Mar 5, 2024

We'll start with Python data structures such as lists, dicts, and sets. Then, we'll delve into the mechanics of Pandas objects, including

series and dataframe.

Python Language Basics

e Numeric types : The primary Python types for numbers are int and float.

2 # int
4.8 # float

e String : Many people use Python for its powerful and flexible built-in string processing capabilities.

var = 'Hello, XMU School of Management' # Either single quotes ' or double quotes

Common string operations

var[:5]

len(var)

var.replace('Management', 'Economics"')
var.split()

var.split(',")

' '.join([var, 'Finance'l)
var.upper()

var. lower()

'1'.zfill(6)

e Boolean : The two boolean values in Python are written as True and False.

Boolean operations

a==

a>b

a<hb

not a==b#al!=0>b

(a>b) and (c >b) # (a >b) & (c > b)
(a>b) or (c>b) # (a>b) | (c >b)

e List : Lists are variable-length and their contents can be modified in-place. You can define them using square brackets [1
» List supports slicing just like String, a single character of a string can be treated as an element of a list.

[]

[1, 2, 3, 4, 5]

[Ial' Ibl’ ICI]

[1, 'a', True, [2, 3, 4], Nonel

X X X X
I nn

Common list operations
a=1[1, 5, 4, 2, 3]
len(a)

max(a)

min(a)

sum(a)

a.count(3)
sorted(a)
a.append(6)
.extend([7, 8])
.insert(1, 'a')
.pop()
.remove('a")

QY R

Iterate over a list
a=1[1, 5, 4, 2, 3]
for i in a:

print(i x 2)

List comprehensions
[i for i in range(5)]

Customize output
['55' + str(i) for i in range(5)]

Filter
[i for i in range(5) if i > 2]

Split the string, filter out spaces, and convert all characters to uppercase
[i.upper() for i in 'Hello XMU' if i !'= ' ']

e set : Asetisanunordered collection of unique elements. Sets have no order and no way to access elements by position

The following methods can be used to define a set
s = {1, 2, 3, 4, 5}
s = set([1, 2, 3, 4, 5])

Unique elements
S ='{1r 21 21 2}

e Dict : Amore common name for it is associative array. It is a flexibly sized collection of key-value pairs. You can define them
using curly braces { }

The following methods can be used to define a dictionary
{'name': 'Tom', 'age': 18, 'height': 180}
dict(name='Tom', age=18, height=180)

dict([('name', 'Tom'), ('age', 18), ('height', 180)1)

o o o H
]

Ways to access a Python dictionary
d['name"']

d['age']l = 20

d['gender'] = 'female'

Common dict operations
d.keys()

d.values()

d.items()

Pandas Basics

Throughout the rest of the class, | use the following import convention for pandas :

import pandas as pd

To get started with pandas, you will need to get comfortable with two data structures: Series and DataFrame

Series

A Series is a one-dimensional array-like object containing a sequence of values and an associated array of data labels, called its
index. The simplest Series is formed from only an array of data.

obj = pd.Series([4, 7, -5, 31)
obj

4

3

0
1
2 -5
3
dtype: int64

The string representation of a Series displayed interactively shows the index on the left and the values on the right. Since we did not
specify an index for the data, a default one consisting of the integers 0 through N - 1 (where N is the length of the data) is created. You
can get the array representation and index object of the Series viaits .values and .index attributes, respectively:

obj.values

array([4, 7, -5, 31)

obj.index

RangeIndex(start=0, stop=4, step=1)

Often it will be desirable to create a Series with an index identifying each data point with a label:

obj2 = pd.Series([81, 77, 85, 59], index = ['amy', 'bob', 'chris', 'david'l])

obj2

amy 81
bob 77
chris 85
david 59

dtype: int64

You can use labels in the index when selecting single values or a set of values:

obj2['amy"']
81

obj2[['chris', 'amy', 'david'l]

chris 85
amy 81
david 59
dtype: int64

Here ['chris', 'amy', 'david'] isinterpreted as a list of indices, even though it contains strings instead of integers.

We can also using functions or operations:

obj2[obj2 > 60]

amy 81
bob 77
chris 85

dtype: int64

obj2 * 2

amy 162
bob 154
chris 170
david 118

dtype: int64

Another way to think about a Series is as a fixed-length, ordered dict , as it is a mapping of index values to data values.
'bob' in obj2

True

'emma’ in obj2

False

Should you have data containedina dict , you can create a Series from it by passing the dict :

sdata = {'Fujian': 53110, 'Sichuan': 56750, 'Shanghai': 44653, 'Guangdong': 129119}
obj3 = pd.Series(sdata)

obj3

Fujian 53110
Sichuan 56750
Shanghai 44653

Guangdong 129119
dtype: int64

When you are only passing a dict , the index in the resulting Series will have the dict's keys in sorted order. You can override this by
passing the dict keys in the order you want them to appear in the resulting Series:

obj4 = pd.Series(sdata, index=['Guangdong', 'Sichuan', 'Fujian','Beijing'l])

obj4

Guangdong 129119.0
Sichuan 56750.0
Fujian 53110.0
Beijing NaN

dtype: float64

Here, three values found in sdata were placed in the appropriate locations, but since no value for 'Beijing' was found, it appears as NaN
(not a number), which is considered in pandas to mark missing or NA values. Since 'Shanghai' was not included in states, it is excluded
from the resulting object.

The isnull and notnull functions in pandas should be used to detect missing data:

pd.isnull(obj4)

Guangdong False

Sichuan False
Fujian False
Beijing True
dtype: bool

pd.notnull(obj4)

Guangdong True

Sichuan True
Fujian True
Beijing False
dtype: bool

A useful Series feature for many applications is that it automatically aligns by index label in arithmetic operations:

obj3 + obj4

Beijing NaN
Fujian 106220.0
Guangdong 258238.0
Shanghai NaN
Sichuan 113500.0

dtype: float64

Both the Series object itself and its index have a name attribute, which integrates with other key areas of pandas functionality:

obj4.name = 'gdp'

obj4.index.name = 'province'
obj4

province

Guangdong 129119.0
Sichuan 56750.0
Fujian 53110.0
Beijing NaN

Name: gdp, dtype: float64

A Series's index can be altered in-place by assignment:

obj4.index = ['A', 'B', 'C', 'D']
obj4

A 129119.0
B 56750.0
C 53110.0
D NaN
Name: gdp, dtype: float64

DataFrame

A DataFrame represents a rectangular table of data and contains an ordered collection of columns, each of which can be a different

value type (numeric, string, boolean, etc.).

The DataFrame has both a row and column index; it can be thought of as a dict of Series all sharing the same index. Under the
hood, the data is stored as one or more two-dimensional blocks rather than a list, dict, or some other collection of one-dimensional

arrays.

data = {'firm': ['Tencent', 'Tencent', 'Tencent', 'Xiaomi', 'Xiaomi', 'Xiaomi'l,
'vear': [2019, 2020, 2021, 2020, 2021, 2022],
'revenue': [54.5, 70.4, 86.6, 36.0, 50.8, 45.41}

frame = pd.DataFrame(data)

The resulting DataFrame will have its index assigned automatically as with Series , and the columns are placed in sorted order:

frame

firm year revenue

0 Tencent 2019 54.5
1 Tencent 2020 70.4
2 Tencent 2021 86.6
3 Xiaomi 2020 36.0
4 Xiaomi 2021 50.8
5 Xiaomi 2022 45.4

For large DataFrames, the .head() method selects only the first five rows:

frame.head()

firm year revenue

0 Tencent 2019 54.5
1 Tencent 2020 70.4
2 Tencent 2021 86.6
3 Xiaomi 2020 36.0
4 Xiaomi 2021 50.8

If you specify a sequence of columns, the DataFrame 's columns will be arranged in that order:

pd.DataFrame(data, columns=['year', 'revenue', 'firm'])

year revenue firm

0 2019 545 Tencent
1 2020 70.4 Tencent
2 2021 86.6 Tencent
3 2020 36.0 Xiaomi
4 2021 50.8 Xiaomi
5 2022 45.4 Xiaomi

If you pass a column that isn't contained in the dict , it will appear with missing values in the result:

frame2 = pd.DataFrame(data, columns=['year', 'firm', 'revenue', 'roa'],
index=['one', 'two', 'three', 'four','five', 'six'l)

frame2
year firm revenue roa
one 2019 Tencent 545 NaN
two 2020 Tencent 70.4 NaN
three 2021 Tencent 86.6 NaN
four 2020 Xiaomi 36.0 NaN
five 2021 Xiaomi 50.8 NaN
six 2022 Xiaomi 45.4 NaN

A columnina DataFrame can beretrieved asa Series either by dict-like notation or by attribute:

frame2['firm']

one Tencent

two Tencent
three Tencent
four Xiaomi
five Xiaomi
six Xiaomi

Name: firm, dtype: object

frame2.year

one 2019
two 2020
three 2021
four 2020
five 2021
six 2022

Name: year, dtype: int64

Note that the returned Series have the same index as the DataFrame , and their name attribute has been appropriately set.

Rows can also be retrieved by position or name with the special .loc attribute:

frame2.loc['three']

year 2021
firm Tencent
revenue 86.6
roa NaN

Name: three, dtype: object

Columns can be modified by assignment. For example, the empty roa column could be assigned a scalar value or an array of values:

frame2['roa'] = 10
frame2

year firm revenue roa

one 2019 Tencent 545 10
two 2020 Tencent 70.4 10
three 2021 Tencent 86.6 10
four 2020 Xiaomi 36.0 10
five 2021 Xiaomi 50.8 10
six 2022 Xiaomi 454 10

frame2['roa'l = [11.4, 14.0, 15.5, 7.1, 9.3, 4.3]

frame2
year firm revenue roa
one 2019 Tencent 545 1.4
two 2020 Tencent 70.4 14.0
three 2021 Tencent 86.6 155
four 2020 Xiaomi 36.0 71
five 2021 Xiaomi 50.8 9.3
six 2022 Xiaomi 454 4.3

When you are assigning lists or arrays to a column, the value's length must match the length of the DataFrame . If you assign a
Series , its labels will be realigned exactly to the DataFrame's index, inserting missing values in any holes:

val = pd.Series([-1.2, -1.5, -1.7], index=['two', 'four', 'five'l)
frame2['roa'] = val
frame2

year firm revenue roa

one 2019 Tencent 545 NaN
two 2020 Tencent 704 -1.2
three 2021 Tencent 86.6 NaN
four 2020 Xiaomi 36.0 -1.5
five 2021 Xiaomi 50.8 -17
six 2022 Xiaomi 45.4 NaN

Assigning a column that doesn't exist will create a new column. The del keyword will delete columns as with a dict.

As an example of del, | first add a new column of boolean values where the state column equals 'Tencent':

frame2['video_game_company'] = (frame2['firm'] == 'Tencent')
frame2
year firm revenue roa video_game_company
one 2019 Tencent 545 NaN True
two 2020 Tencent 704 -1.2 True
three 2021 Tencent 86.6 NaN True
four 2020 Xiaomi 36.0 -15 False
five 2021 Xiaomi 50.8 -17 False
six 2022 Xiaomi 45.4 NaN False

del frame2['video_game_company']
frame?2

year firm revenue roa

one 2019 Tencent 545 NaN
two 2020 Tencent 704 -1.2
three 2021 Tencent 86.6 NaN
four 2020 Xiaomi 36.0 -1.5
five 2021 Xiaomi 50.8 -17
six 2022 Xiaomi 45.4 NaN

Another common form of data is a nested dict of dicts:

revenue = {'Tencent': {2020: 70.4, 2021: 86.6},
'Xiaomi': {2020: 36.0, 2021: 50.8, 2022: 45.4}}

frame3 = pd.DataFrame(revenue)
frame3

Tencent Xiaomi

2020 70.4 36.0
2021 86.6 50.8
2022 NaN 454

You can transpose the DataFrame (swap rows and columns):

frame3.T

2020 2021 2022
Tencent 70.4 86.6 NaN

Xiaomi 36.0 508 454

Essential functionalities of Series and DataFrame

This section will walk you through the fundamental mechanics of interacting with the data containedina Series or DataFrame

Dropping Entries from an Axis

Dropping one or more entries from an axis is easy if you already have an index array or list without those entries. The .drop() method
will return a new object with the indicated value or values deleted from an axis:

obj = pd.Series([0, 1, 2, 3, 4], index=['a‘', 'b', 'c', 'd', ‘'e'l)

obj

a 0

b 1

C 2

d 3

e 4
dtype: int64

new_obj = obj.drop('c")
new_obj

P WERLS

a
b
d
e
dtype: int64

obj.drop(['d', 'c'])

a 0
b 1
e 4
dtype: int64

obj

AP OWNELOS

a
b
C
d
e
dtype: int64

Many functions, like .drop() , which modify the size or shape of a Series or DataFrame , can manipulate an object in-place
without returning a new object:

obj.drop('d', inplace=True)

obj

a 0

b 1

C 2

e 4
dtype: int64

With DataFrame , index values can be deleted from either axis. To illustrate this, we first create an example DataFrame :

data = pd.DataFrame([[0, 1, 2, 31,[4, 5, 6, 71,18, 9, 10, 11],[12, 13, 14, 1511,
index=['Tencent', 'Xiaomi', 'ByteDance', 'miHoYo'],
columns=['one', 'two', 'three', 'four'])

data
one two three four
Tencent 0 1 2 3
Xiaomi 4 5 6 7

ByteDance 8 9 10 11

miHoYo 12 13 14 15

Calling .drop() with a sequence of labels will drop values from the row labels (axis 0):

data.drop(['Xiaomi', 'ByteDance'l)

one two three four
Tencent 0 1 2 3

miHoYo 12 13 14 15

You can drop values from the columns by passing axis=1 :

data.drop('two', axis=1)

one three four

Tencent 0 2 3
Xiaomi 4 6 7
ByteDance 8 10 11

miHoYo 12 14 15

Selection and Filtering

Indexing into a DataFrame is for retrieving one or more columns either with a single value or sequence:

data

one two three four

Tencent 0 1 2 3
Xiaomi 4 5 6 7
ByteDance 8 9 10 11

miHoYo 12 13 14 15

datal'two']

Tencent 1
Xiaomi 5
ByteDance 9
miHoYo 13

Name: two, dtype: int64

datal[['three', 'one'l]

three one
Tencent 2 0
Xiaomi 6 4

ByteDance 10 8

miHoYo 14 12

Indexing like this has a few special cases. First, slicing or selecting data with a boolean array:

datal:2]

one two three four
Tencent 0 1 2 3

Xiaomi 4 5 6 7

dataldatal'one'] > 7]

one two three four
ByteDance 8 9 10 11

miHoYo 12 13 14 15

Passing a listtothe [] operator selects columns.

Another use case is in indexing with a boolean DataFrame , such as one produced by a scalar comparison:

dataldata < 10] = 0

data
one two three four
Tencent 0 0 0 0
Xiaomi 0 0 0 0

ByteDance 0 0 10 11

miHoYo 12 13 14 15

For DataFrame label-indexing on the rows, | introduce the special indexing operators .loc and iloc . They enable you to select a
subset of the rows and columns from a DataFrame using either axis labels (loc) or integers (iloc).

As a preliminary example, let's select a single row and multiple columns by label:

data = pd.DataFrame([[0, 1, 2, 31,[4, 5, 6, 7]1,I[8, 9, 10, 11],[12, 13, 14, 1511,
index=['Tencent', 'Xiaomi', 'ByteDance', 'miHoYo'],
columns=['one', 'two', 'three', 'four'l)

data

one two three four

Tencent 0 1 2 3
Xiaomi 4 5 6 7
ByteDance 8 9 10 11

miHoYo 12 13 14 15

data.loc['ByteDance', ['two', 'three'l]l

two 9
three 10
Name: ByteDance, dtype: int64

We'll then perform some similar selections with integers using .iloc :

data.iloc[2, [3, 0, 11]

four 11
one 8
two 9

Name: ByteDance, dtype: int64

Both indexing functions work with slices in addition to single labels or lists of labels:

data.loc['Xiaomi']

one 4
two 5
three 6
four 7

Name: Xiaomi, dtype: int64

data.iloc[:, :3][datal'three'l]l > 2]

one two three
Xiaomi 4 5 6
ByteDance 8 9 10

miHoYo 12 13 14

Arithmetic and Data Alignment

An important pandas feature for some applications is the behavior of arithmetic between objects with different indexes. When you are
adding together objects, if any index pairs are not the same, the respective index in the result will be the union of the index pairs.

sl = pd.Series([7.3, -2.5, 3.4, 1.5], index=['a', 'c', 'd', 'e'l)
sl

R W N~
U AU W

a
C
d
e
dtype: float64

s2 = pd.Series([-2.1, 3.6, -1.5, 4, 3.1], index=['a', 'c', 'e', 'f', 'g'l)

s2

a -2.1

C 3.6

e -1.5

f 4.0

g 3.1
dtype: float64

sl + s2

a 5.2
C 1.1
d NaN
e 0.0
f NaN
g NaN
dtype: float64

The internal data alignment introduces missing values in the label locations that don't overlap.
dfl = pd.DataFrame([[0, 1, 21, [3, 4, 51, [6, 7, 811,
columns=list('bcd'),

index=['Tencent', 'Xiaomi', 'ByteDance'])
df1

Tencent 0 1 2

Xiaomi 3 4 5

»
N
00

ByteDance

df2 = pd.DataFrame([[0, 1, 21, [3, 4, 5], [6, 7, 81, [9, 10, 11]],
columns=list('bde'),
index=['miHoYo', 'ByteDance', 'Tencent', 'Alibaba'])

df2
b d e
miHoYo 0 1 2
ByteDance 3 4 5
Tencent 6 7 8
Alibaba 9 10 11

Adding these together returns a DataFrame whose index and columns are the unions of the ones in each DataFrame :

dfl + df2

b c d e

Alibaba NaN NaN NaN NaN
ByteDance 9.0 NaN 12.0 NaN
Tencent 6.0 NaN 9.0 NaN
Xiaomi NaN NaN NaN NaN

miHoYo NaN NaN NaN NaN

Since the 'c' and 'e' columns are not found in both DataFrame objects, they appear as all missing in the result.

Sorting and Ranking

Sorting a dataset by some criterion is another important built-in operation. To sort by row or column index, use the .sort_index()
method, which returns a new, sorted object:

obj = pd.Series(range(4), index=['d', 'a', 'b', 'c'l)
obj

W NP

d
a
b
C
dtype: int64

obj.sort_index()

S WN B

a
b
C
d
d

type: int64

With a DataFrame , you can sort by index on either axis:

frame = pd.DataFrame([[8, 9, 10, 11], [0, 1, 2, 31, [4, 5, 6, 711,
index=['three', 'one', 'two'],
columns=['d"', 'a', 'b', 'c'l)

frame

three 8 9 10 N1
one 0 1 2 3

two 4 5 6 7

frame.sort_index()

d a b ¢
one 0 1 2 3
three 8 9 10 1

two 4 5 6 7

frame.sort_index(axis=1)

a b cd
three 9 10 11 8
one 1 2 3 O

two 5 6 7 4

The data is sorted in ascending order by default, but can be sorted in descending order, too:

frame.sort_index(axis=1, ascending=False)

three 8 11 10 9
one 0 3 2 1

two 4 7 6 5

When sorting a DataFrame , you can use the data in one or more columns as the sort keys. To do so, pass one or more column names
to the by option of .sort_values() :

frame = pd.DataFrame({'b': [4, 7, -3, 2], 'a': [0, 1, 0, 1]})

frame

b a
0 40
1 7 1
2 -3 0
3 2 1

frame.sort_values(by='b")

b a
2 -3 0
3 21
0 4 0
1 7 1

frame.sort_values(by=['a', 'b'])

2 -3 0
0 40
3 21
1 7 1

Axis Indexes with Duplicate Labels

Up until now all of the examples we've looked at have had unique axis labels (index values). While many pandas functions require that
the labels be unique, it's not mandatory. Let's consider a small Series with duplicate indices:

obj = pd.Series(range(5), index=['a', 'a', 'b', 'b', 'c'l)

obj

a 7]

a 1

b 2

b 3

C 4
dtype: int64

Data selection is one of the main things that behaves differently with duplicates. Indexing a label with multiple entries returns a
Series , while single entries return a scalar value:

objl['a'l
a (7]
a 1

dtype: int64
obj['c']

4

