Lecture 03. Data Loading and Cleaning

Instructor: Luping Yu

Mar 12, 2024

Accessing data is a necessary first step for using most of the tools in this course. We are going to be focused on data input and output

using pandas.

Reading and writing data in text format

pandas features a number of functions for reading tabular data as a DataFrame object.

— —  — — — —
CSsvVv XLS  PARQUET CSV XLS  PARQUET

— -

——— T —

— e, = read_* to_* o m— —
HTML HDF5 JSON » HIML HDF5 JSON

—>
< K { < FF {
GBQ SOQL GBQ  SQL

© 8 0 g

The following table summarizes some of them, though read_csv is likely the ones you'll use the most.



Function Description

[read_csv | Load delimited data from a file, URL, or file-like object; use comma as default delimiter |[read_excel | Read tabular data from
an Excel XLS or XLSX file |[read_stata | Read a dataset from Stata file format |read_sas | Read a SAS dataset stored in one of the SAS
system's custom storage formats |read_html | Read all tables found in the given HTML document |read_json | Read data from a JSON
(JavaScript Object Notation) string representation |read_pickle | Read an arbitrary object stored in Python pickle format [read_sql | Read
the results of a SQL query (using SQLAlchemy) as a pandas DataFrame

Reading and Writing .csv (comma-separated values)

. CSV is a delimited text file that uses a comma to separate values. A .csv file typically stores tabular data (numbers and text) in
plain text.

Let's start with a small .csv text file: exl.csv

import pandas as pd
pd.read_csv('examples/exl.csv') # relative path

a b ¢ d message

01 2 3 4 hello
15 6 7 8 world
2 9 10 1M 12 foo

# absolute path (absolute path differs between Windows and Mac)
pd.read_csv('/Users/luping/desktop/teaching/2024_fdap/examples/ex1l.csv')



a b ¢ d message

0O 1 2 3 4 hello
15 6 7 8 world
2 9 10 11 12 foo

pandas.read_csv() perform type inference. That means you don't necessarily have to specify which columns are numeric, integer,
boolean, or string:

df = pd.read_csv('examples/exl.csv')

df.dtypes

a int64
b int64
C int64
d int64
message object

dtype: object

A file will not always have a header row. Consider this file: ex2.csv

pd.read_csv('examples/ex2.csv')

1 2 3 4 hello
0 5 6 7 8 worl

1 9 10 11 12 foo

To read this file, you have a couple of options. You can allow pandas to assign default column names, or you can specify names yourself:

pd.read_csv('examples/ex2.csv', names=['a', 'b', 'c', 'd', 'message'l)



a b ¢ d message

0O 1 2 3 4 hello
15 6 7 8 world
2 9 10 11 12 foo

Suppose you wanted the message column to be the index of the returned DataFrame . You can use the index_col argument:

pd.read_csv('examples/ex2.csv', names=['a', 'b', 'c', 'd', 'message'l], index_col='message')

message
hello 1 2 3 4
world 5 6 7 8

foo 9 10 11 12

Handling missing values is an important and frequently nuanced part of the file parsing process. Consider this file: ex3.csv

pd.read_csv('examples/ex3.csv')

something a b ¢ d message
0 one 1 2 30 4 NaN
1 two 5 6 NaN 8 world
2 three 9 10 11.0 12 foo

Missing data is usually either not present (empty string) or marked by some sentinel value, such as NA and NULL.

df = pd.read_csv('examples/ex3.csv')



pd.notnull(df)

something a b c d message
(0} True True True True True False
1 True True True False True True
2 True True True True True True

Using to_csv() method, we can write the data out to a comma-separated file:

df.to_csv('examples/outl.csv')

With no other options specified, both the row and column labels are written. Both of these can be disabled:

df.to_csv('examples/out2.csv', index=False)

Parameters of data loading functions

Because of how messy data in the real world can be, data loading functions (especially read_csv() ) have grown very complex in their

options over time. The online pandas documentation has many examples about how each of them works.

API reference (pandas documentation) of read_csv() : https://pandas.pydata.org/docs/reference/api/pandas.read_csv.html

Reading Microsoft excel files
pandas also supports reading tabular data stored in Excel 2003 (and higher) files using pandas.read_excel() function:

Internally these tools use the add-on packages xlIrd and openpyxl to read XLS and XLSX files, respectively. You may need to install
these manually with pip.

df = pd.read_excel('examples/exl.xlsx"', 'Sheetl')


https://pandas.pydata.org/docs/reference/api/pandas.read_csv.html

df

To write pandas data to Excel format, you can pass a file path to to_excel() :

df.to_excel('examples/outl.xlsx")

Data cleaning and preparation

During the course of doing data analysis and modeling, a significant amount of time is spent on data preparation: loading, cleaning,
transforming, and rearranging. Such tasks are often reported to take up 80% or more of an analyst's time.

Sometimes the way that data is stored in files or databases is not in the right format for a particular task. Fortunately, pandas provides
you with a high-level, flexible, and fast set of tools to enable you to manipulate data into the right form.

Handling Missing Data

Missing data (NA, which stands for not available) occurs commonly in many data analysis applications. For numeric data, pandas uses
the floating-point value NaN (not a number) to represent missing data.

With DataFrame objects, you may want to drop rows or columns that are all NA or only those containing any NAs.

dropna() by default drops any row containing a missing value:

df = pd.DataFrame([[1., 6.5, 3.],
[1., None, Nonel,
[None, None, Nonel,
[None, 6.5, 3.11)

df



0 10 65 30

1 1.0 NaN NaN

N

NaN NaN NaN

w

NaN 6.5 3.0

df.dropna()

0 1 2

0 10 65 3.0

Passing how="all' will only drop rows that are all NA:

df.dropna(how="all")

0 1 2
0 10 65 30
1 1.0 NaN NaN

3 NaN 65 3.0

To drop columns in the same way, pass axis=1:

df[3] = None

df



0 170 6.5 3.0 None

1 1.0 NaN NaN None

N

NaN NaN NaN None

w

NaN 6.5 3.0 None

df.dropna(axis=1, how='all')

0 1 2
0 10 65 30

1 1.0 NaN NaN

N

NaN NaN NaN

w

NaN 6.5 3.0

Filling In Missing Data

Rather than filtering out missing data, you may want to fill in the "holes" in any number of ways. The fillna method is the function to

use.

Calling fillna with a constant replaces missing values with that value:

df = pd.DataFrame([[10, 30, 20, 401,
[8, 25, 15, 351,
[6, 20, 10, Nonel,
[None, None, None, None],
[None, None, 10, 3011,
columns=['class participation', 'homework', 'midterm', 'final'l)

df



class participation homework midterm final

0 10.0 30.0 20.0 40.0
1 8.0 25.0 15.0 35.0
2 6.0 20.0 10.0 NaN
3 NaN NaN NaN NaN
4 NaN NaN 10.0 30.0

df.fillna(5)

class participation homework midterm final

0 10.0 30.0 20.0 40.0
1 8.0 25.0 15.0 35.0
2 6.0 20.0 10.0 5.0
3 5.0 5.0 50 5.0
4 5.0 5.0 10.0 30.0

Calling fillna() with a dict, you can use a different fill value for each column:

df.fillna({'class participation': 5, 'final': 30})

class participation homework midterm final

0 10.0 30.0 20.0 40.0
1 8.0 25.0 15.0 35.0
2 6.0 20.0 10.0 30.0
3 5.0 NaN NaN 30.0
4 5.0 NaN 10.0 30.0



The interpolation methods can be used with fillna:

df.fillna(method="'ffill")

class participation homework midterm final

0 10.0 30.0 20.0 40.0
1 8.0 25.0 15.0 35.0
2 6.0 20.0 10.0 35.0
3 6.0 20.0 10.0 35.0
4 6.0 20.0 10.0 30.0

With fillna you can do lots of other things with a little creativity. For example, you might pass the mean or median value of a Series:

df.describe() #summary statistics

class participation homework midterm final

count 3.0 3.0 4.000000 3.0
mean 8.0 25.0 13.750000 35.0
std 2.0 5.0 4.787136 5.0
min 6.0 20.0 10.000000 30.0
25% 7.0 22.5 10.000000 32.5
50% 8.0 25.0 12.500000 35.0
75% 9.0 275 16.250000 375
max 10.0 30.0 20.000000 40.0

df.fillna(df.mean())



class participation homework midterm final

0 10.0 30.0 20.00 40.0
1 8.0 25.0 15.00 35.0
2 6.0 20.0 10.00 35.0
3 8.0 25.0 13.75 35.0
4 8.0 25.0 10.00 30.0

Removing Duplicates

Duplicate rows may be found in a DataFrame for any number of reasons. Here is an example:

df = pd.DataFrame({'k1l': ['one', 'two'] % 3 + ['two'],
'k2': [1, 1, 2, 3, 3, 4, 41})

df
k1 k2
0 one 1
1 two 1
2 one 2
3 two 3
4 one 3
5 two 4
6 two 4



The DataFrame method duplicated() returns aboolean Series indicating whether each row is a duplicate (has been observed
in a previous row) or not:

df.duplicated()

0 False
1 False
2 False
3 False
4 False
5 False
6 True
dtype: bool

Relatedly, drop_duplicates() returnsa DataFrame where the duplicated array is False:

df.drop_duplicates()

k1 k2
0 one 1
1 two 1
2 one 2
3 two 3
4 one 3
5 two 4

drop_duplicates() considers all of the columns; alternatively, you can specify any subset of them to detect duplicates.
Suppose we had an additional column of values and wanted to filter duplicates only based on the 'k1' column:

df['k3'] = range(7)

df



k1 k2 k3
0 one 1 0

1 two 1 1

2 one 2 2
3 two 3 3
4 one 3 4
5 two 4 5

6 two 4 6

df.drop_duplicates(['k1'])

k1 k2 k3
0 one 1 0

1 two 1 1

duplicated() and drop_duplicates() by default keep the first observed value combination. Passing keep="'1last' will return
the last one:

df.drop_duplicates(['kl', 'k2'], keep='last')



k1 k2 k3

0 one 1 0

1 two 1 1

2 one 2 2
3 two 3 3
4 one 3 4
6 two 4 6

Vectorized string functions in pandas

Cleaning up a messy dataset for analysis often requires a lot of string regularization. For example, a column containing strings will
sometimes have missing data:

df = pd.Series({'Dave': 'dave@google.com',

'Jack': 'jack@xmu.edu.cn',
'Steve': 'steve@gmail.com',
'Rose': 'rose@xmu.edu.cn',

‘Tony': None})

df

Dave dave@google.com
Jack jack@xmu.edu.cn
Steve steve@gmail.com
Rose rose@xmu.edu.cn
Tony None

dtype: object

Series has array-oriented methods for string operations that skip NA values. These are accessed through Series's str attribute.

For example, we could check whether each email address has 'xmu.edu’ in it with str.contains :



df.str.contains('xmu.edu")

Dave False
Jack True
Steve False
Rose True
Tony None

dtype: object

You can similarly slice strings using this syntax:

df.str[:5]

Dave dave@
Jack jacka@
Steve steve
Rose rose@
Tony None

dtype: object

df.str.split('@")

Dave [dave, google.com]
Jack [jack, xmu.edu.cn]
Steve [steve, gmail.com]
Rose [rose, xmu.edu.cnl]
Tony None

dtype: object

df.str.split('@').str.get(0)

Dave dave
Jack jack
Steve steve
Rose rose
Tony None

dtype: object

Partial listing of vectorized string methods.



Method Description

|cat|Concatenate strings element-wise with optional delimiter |contains|Return boolean array if each string contains pattern/regex
|count|Count occurrences of pattern |extract|Use a regular expression with groups to extract one or more strings from a Series of strings
|lendswith|Equivalent to x.endswith(pattern) for each element |startswith|Equivalent to x.startswith(pattern) for each element
[findall|Compute list of all occurrences of pattern/regex for each string |get|Index into each element (retrieve i-th element) |join|Join
strings in each element of the Series with passed separator |len|Compute length of each string |lower,upper|Convert cases;equivalent to
x.lower() or x.upper() for each element |match|Use re.match with the passed regular expression on each element |replace|Replace
occurrences of pattern/regex with some other string |slice|Slice each string in the Series |split|Split strings on delimiter or regular

expression |strip|Trim whitespace from both sides, including newlines



