
Lecture 04. Data Aggregation and Group
Operations

Instructor: Luping Yu

Mar 19, 2024

Categorizing a dataset and applying a function to each group, whether an

aggregation or transformation, is often a critical component of a data analysis

workflow. After loading and preparing a dataset, you may need to compute group

statistics for reporting or visualization purposes.

pandas provides a flexible groupby() interface, enabling you to slice, dice, and

summarize datasets in a natural way.

GroupBy Mechanics

Punchline: split-apply-combine （拆分-应⽤-合并）

In the first stage of the process, data is split into groups based on one or more

keys that you provide.

Once this is done, a function is applied to each group, producing a new value.

Finally, the results of all those function applications are combined into a result

object.

See the following figure for a mockup of a simple group aggregation:

To get started, here is a small tabular dataset as a DataFrame :

import pandas as pd
import numpy as np
#np.random.randn: generate random numbers

df = pd.DataFrame({'key1' : ['a', 'a', 'b', 'b', 'a'],
 'key2' : ['one', 'two', 'one', 'two', 'one'],
 'data1' : np.random.randn(5),
 'data2' : np.random.randn(5)})

df

Suppose you wanted to compute the mean of the data1 column using the labels

from key1 .

There are a number of ways to do this. One is to access data1 and call

groupby() with the column at key1 :

grouped = df['data1'].groupby(df['key1'])

grouped

This grouped variable is now a GroupBy object .

It has not actually computed anything yet except for some intermediate data about

the group key df['key1'] . The idea is that this object has all of the information
needed to then apply some operation to each of the groups.

For example, to compute group means we can call the GroupBy's mean() method:

grouped.mean()

The important thing here is that the data has been aggregated according to the

group key, producing a new Series that is now indexed by the unique values in the

key1 column.

If instead we had passed multiple arrays as a list, we'd get something different:

df['data1'].groupby([df['key1'], df['key2']]).mean()

Here we grouped the data using two keys, and the resulting Series now has a

hierarchical index consisting of the unique pairs of keys observed.

A generally useful GroupBy method is size() , which returns a Series containing
group sizes:

df.groupby(['key1', 'key2']).size()

For large datasets, it may be desirable to aggregate only a few columns. For example,

in the preceding dataset, to compute means for just the data2 column, we could

write:

In []:

In []:

In []:

In []:

In []:

df.groupby(['key1', 'key2'])['data2'].mean()

Data Aggregation

Aggregations refer to any data transformation that produces scalar values from

arrays. The preceding examples have used several of them, including mean and

size . Built-in functions can be invoked using agg() .

Function Description

|count | Number of non-NA values in the group |sum | Sum of non-NA values |mean |

Mean of non-NA values |median | Arithmetic median of non-NA values |std, var |

Unbiased (n – 1 denominator) standard deviation and variance |min, max | Minimum

and maximum of non-NA values |first, last | First and last non-NA values

df = df[['key1','data1','data2']]

df

df.groupby('key1').max()

df.groupby('key1').agg('min')

To use your own aggregation functions, pass any function that aggregates an array to

the apply method:

def peak_to_peak(arr):
 return arr.max() - arr.min()

df.groupby(df['key1']).apply(peak_to_peak)

General split-apply-combine

Create analysis with .groupby() and built-in functions (mean , sum ,
count , etc.)

Create analysis with .groupby() and user defined functions

Use .transform() to join group stats to the original dataframe

Let's get started with the tipping dataset:

df = pd.read_csv('examples/tips.csv')

df = df[['day','size','total_bill','tip']]

df

df.groupby('day').mean()

In []:

In []:

In []:

In []:

In []:

In []:

In []:

In []:

df.groupby('day').transform('mean')

df['day_avg_tip'] = df.groupby('day')['tip'].transform('mean')

df

Column-Wise and Multiple Function Application

As you've already seen, aggregating data is a matter of using aggregate with the

desired function or calling a method like mean or std .

However, you may want to aggregate using a different function depending on the

column, or multiple functions at once.

df = pd.read_csv('examples/tips.csv')

df['tip_pct'] = df['tip'] / df['total_bill']

df

df.groupby(['day','smoker'])['tip_pct'].agg('mean')

If you pass a list of functions or function names instead, you get back a DataFrame
with column names taken from the functions:

df.groupby(['day','smoker'])['tip_pct'].agg(['mean','median','std'])

The most general-purpose GroupBy method is apply() . Suppose you wanted to

select the top five tip_pct values by group.

df

First, write a function that selects the rows with the largest values in a particular

column:

def top(df, n=5, column='tip_pct'):
 return df.sort_values(by=column, ascending=False)[:n]

top(df)

Now, if we group by gender and call apply with this function, we get the following:

df.groupby('sex').apply(top)

What has happened here? The top function is called on each row group from the

DataFrame. The result therefore has a hierarchical index whose inner level contains

index values from the original DataFrame.

If you pass a function to apply that takes other arguments or keywords, you can

pass these after the function:

In []:

In []:

In []:

In []:

In []:

In []:

In []:

In []:

In []:

df.groupby(['sex', 'day']).apply(top, n=1, column='total_bill')

Beyond these basic usage mechanics, getting the most out of apply may require

some creativity.

In []:

